
Play (UnityWebGLVersion) on itch.io:
https://rileyelwell.itch.io/present-plunge

DemoVideo: https://youtu.be/UYpTmPccrjQ
(If the demo video gives a playback error when clicking a YouTube

link from an Adobe Acrobat PDF, reload the page to fix it!)

Futuregames Work Sample ~ Game Designer Education
Game: Present Plunge

Submitted By: Riley Elwell



Introduction
Short Description
Present Plunge is a 2D arcade-style game blending action and precision during the holiday season. In this

endless runner type game, players catch presents to form stacks while avoiding falling anvils.

Theme
Every festive season, Santa embarks on his global sleigh journey, spreading holiday cheer by delivering

presents to homes.Who can blame him for dropping a couple along the way? Besides, that's what elves are

for! Step into the jolly shoes of one of Santa's little helpers and catch the presents that fall from his sleigh.

But beware of the dangerous anvils plummeting from above!Make sure to be on your best behavior as you

try to earn Santa's special rewards for swift grabs and impressive catches. Best of luck on this merry

mission!

Inspiration
This game’s main systems are inspired by the game jam’s predetermined holiday theme and requirement to

include anvils. I am deciding to create a 2Dmini game because I am a fan of older arcade-style games and

only have oneweek to develop it. Other games that inspired some design decisions include Galaga. Tetris,

and Jamestown+.

The brief narrative is that an elf has been taskedwith helping Santa catch and save the presents that fall

from his sleigh. Unfortunately, there are anvils that also fall from his sleigh, and pose a threat to your helpful

elf. This is inspired directly from themovie, Elf, as Buddywould do anything to help Santa deliver presents to

the children each year.

Gameplay Concepts
Design Pillars
Precision
The game needs tomake players feel like they need to focus to succeed, making it a challenge. Theymust

feel the need to be precise in their strategies and actions in order to win.



Progression
The game needs to feel rewarding for players, giving them bonus points for achieving certain goals or

milestones. It should provide the player with different content the longer the game continues in order to

increase engagement.

Pandemonium (Chaotic Action)
The game should be very chaotic and require quick decision-making, challenging players each time they play.

It shouldmotivate players to improve their skills over time or adopt new strategies.

Core Gameplay
Themain gameplay loop consists of the player stacking presents as they fall from the sky. Theymust place

their presents on the ground to receive their score for each stack. To increase difficulty, if any part of a stack

or the player is hit by an anvil, all of the current presents are reset.

The Player Catching/Stacking Presents

Win/Lose Conditions
The gamewill always only endwhen the player loses their three lives. A life is lost when the player or their

current stack of presents is hit by a falling anvil. When the game ends, the score is displayed to the player

before providing them options to restart, return to themainmenu, or quit.

Although there is technically no “game-ending” winning condition, the player’s main objective is to score as

many points as possible. This is achieved by stackingmore andmore presents, but different strategies may

be applied. For example, bonus points are awarded to players for placing higher stacks or placing stacks

quicker.While one personmay try to create high stacks in a short amount of time, another personmay take

their timewith smaller stacks to avoid falling anvils with greater ease.



Game Mechanics
Movement
The player should be able tomove horizontally along the ground, but not vertically. It should feel smooth and

responsive. The speed should be balanced between fast and slow tomake a consistent difficulty.

Stacking
The player may automatically stack presents by catching them in their hands or on top of a previously caught

present. The stack can have amaximum of ten presents to keep the screen space free. Hitboxes will be

designed in order to achieve a higher level of precision from the player.

Placing
The player may place a stack downwhenever they are holding at least one present using a keybind. This will

activate the score calculator and they will be rewardedwith the correct amount of points. This action can be

performed anywhere on themap and has no cooldown.

Dash
The player should be able to quickly dash to the left or right every couple of seconds, activated by a keybind.

This contributes to all three pillars as it adds to the chaos, forces the player to be precise in their movements,

andmotivates the player to be faster to gain higher rewards.

Development Process
Minimum Viable Product (MVP)
My first goal when tackling any project is to identify themost important components needed to have a game

that functions. Then, I implement these components in order to producemyMinimumViable Product

(MVP). This means it may not look pretty, but the game is playable and contains themain

features/mechanics I outlined from the start. After these tasks have been completed, then I can advance to

making sprites, a clean user interface, smoother controls, gameplay tweaks, and a tutorial.

For Present Plunge I beganwith this list of must-haves (see video link below forMVP):

● Controllable player with horizontal movement

● Falling presents and anvils

● The ability to catch, stack, and place presents

● Conditions for winning and losing

● Scoring system

Object Spawning
When designing and developing a game, I always try to keep performance inmind. I know

spawning/instantiating lots of objects at once in a Unity scene can overwhelm the processing quickly, so I

thought of different ways to handle this. I opted for using an object pool (see video links below), which
essentially is an array that holds a predefined number of GameObjects that are spawned at the start of the

scene being loaded. Then, the objects are set active and inactive in the scenewhenever they are needed.

This allows instantiation to only be called once, and all the script needs to do is update the recycled object’s

variables and positions.



This function retrieves pooled present objects by iterating through a for loop to identify deactivated presents
currently in the scene. It's designated as a public function to enable invocation from other classes via my singletons.
These classes can then efficiently 'spawn' additional presents on the screen from the object pool, thereby optimizing

performance.

Object Pool Spawning Prototype Object Pool Spawning Final Version

My object pool succeeded in spawning the anvils and presents, but there was an issue with the placed

presents left on the screen. Although they were shifted to a background sprite, they still consumedmemory

as GameObjects. To address this, I introduced a "shadow elf" to clear them off the screen so they could be

deactivated and re-added into the object pool. This was a key design decision in stabilizing performance
without sacrificing gameplay or narrative aspects.

“Shadow Elf” Clearing Presents



Present Stacking
My first design consisted of squares and triangles with 2D colliders (see video links below), which checked

collisions with other presents or the player via scripting. However, I soon realized the need to differentiate

between falling presents, those forming the player's stack, and the stack's top. To achieve this, I utilized
tags, sorting layers, and collision layers, ensuring each present stacked atop the previous onewhile
maintaining proper sprite display. Additionally, my scripts ensured presents stacked only on the top of the

stack, with anvils terminating the stack upon collision with any present or the player.

I initially planned to include a physics-based balancing system for the present stack, influenced by factors

like stack height and player speed. However, I opted against it because it would introduce excessive chaos

and hinder the player's ability to execute quick, precisemovements like dashing. Additionally, this approach

would detract from the core objective of building tall stacks quickly, instead emphasizing the struggle to

maintain smaller stacks. Such a deviation from the design pillars would result in a dull and sluggish user

experience.

Collision Layer Matrix Tags Sorting Layers (Sprites)

Present Stacking Prototype Present Stacking Final Version

Scoring System
A player should bemotivated to increase their score, and therefore improve the skills needed to achieve

this. In order to design this, the scoring should not just be a static counter for the number of stacked

presents. This is why I decided to add bonusmultipliers, based on the height of a stack and the time taken to

place it down. The combination of these features in the scoring system incentivises the player to improve



their skills or adopt new strategies to achieve a higher score andmakes the gamemore engaging the longer

you play.

This function calculates and updates the player’s score. It determines whether multipliers should be applied by
receiving the time and height for the currently placed stack via the singleton instance of the PresentStack class.

Then, the UI text is updated to display the score to the player.

User Interface & User Experience (UI/UX)
Mymain goal is to keep a simple and clean user interface, maximizing screen space for gameplay while

ensuring easy visibility. To achieve this, I created rectangles with large icons and light text on dark

backgrounds. Following theRule of Thirds, these are placed in the corners of the screen to provide key
informationwithout distracting from gameplay.All menusmaintain a consistent style and aesthetic.

Keeping the 3 C's in mind for my player experience, I prioritized clear instructions, responsive controls,
and consistent gameplay actions.Rather than a traditional tutorial, I opted for a written description of how
to play that is displayed to the user at the beginning of the game. I chose this method because of the game’s

short length, limited ruleset, and simple premise.

Applying the Rule of Thirds “How To Play” Screen (Tutorial)



Pause Screen GameOver Screen

Achieving smooth and consistent controls required extensive adjustment of variables like speed, collision

detection, and spawning rates. It was also tough finding a balance between a reasonable difficulty and the

original chaotic feeling I wanted to capture. Playtesting with friends and game jammers provided valuable

feedback, leading to adjustments tomake the game easier initially and progressively harder as players stack

more presents.

Art Assets
While mymain focus is game design, I enjoy craftingmy own assets to givemy games a personal touch. I'm

particularly drawn to pixel-art, which I’ve grasped the basics through online research and YouTube tutorials.

Using Aseprite tomake pixel-art for Present Plungewas an easy decision because of its 2D arcade-style

gameplay.Mymain goal with these assets was simplicity, emphasizing key features on each one for
clarity.Maintaining a consistent color schemewas also easy, as the Christmas theme guidedmy choices.

Despite my lack of expertise in art and asset creation, I think they serve the game’s purpose and scopewell.

Anvil Heart (Life) Present Elf (Player)

Animation
One extra feature I wanted to add tomy game to give it more realism and character was the elf having a walk

animation. Even though I have experimentedwith 3D animation before and know some of the basic

principles, 2D animation is a completely different story. I struggled to develop a realistic walk cycle for the

elf, and found it evenmore difficult to decide where to place certain pixels in each frame. After lots of trial

and error I got something that wasn’t perfect, but it resembledwhat I was going for.

After completing the necessary frames in Aseprite, I had to export it to Unity as a sprite sheet. I set up the

animation with only two states, Idle and elf_walking_right. These states were hooked up to activate when a

boolean indicated that the player wasmoving. I only needed one animation for walking to the right, because



I could simply flip the sprite in the other direction to achieve the desired result. I had to experiment with the

speeds, exit times, and loops, but eventually I got a decent finishedwalking animation.

Elf Walking Sprite Sheet in Aseprite

Animation States for Player Controller in Unity

Closing Thoughts and Reflections
Documentation
Creating a comprehensive GameDesign Document (GDD) for the first time proved immensely beneficial in

organizingmy thoughts and ensuring alignment withmy original pillars and goals. Documentingmy process

with screenshots, video clips, and notes enabledme to reviewmy progress from start to finish. This

documentation not only clarifiedmy decision-making process and reasoning at the time but also facilitated

reflection on those decisions later on.Moreover, writing downmy thoughts helpedme stay focused and

efficient in completing subsequent tasks bymaintaining a clear goal in mind.

Testing & Iteration
The game development process is far from simple, and I found the testing and iterative phase to be the

longest for me. Quick prototyping is key for assessing the fun factor of mechanics or systems, but achieving

perfection takes time. Ensuring smooth, enjoyable gameplay with just the right level of challenge is



paramount for player satisfaction. I relied heavily on trial and error during testing, tweaking everything from

stacking andmovement to scoring and object spawning. It was a rewarding process to fine-tune numbers

and settings until I struck the perfect gameplay balance. Overall, I learned to appreciate the iterative process

and constantly looked for ways to enhance the game's feel through adjustments to its systems.

Future Improvements
If I were to revisit this project later, I'd aim to implement new features that align withmy original design

goals. Specifically, I'd like to introduce different variants of presents that provide the player with a greater

score or powerups. These could enhance the dynamic nature of the player’s abilities, such as enabling

quicker dashes or adding jumps. I also envision creating distinct levels with fresh obstacles or challenges to

maintain gameplay diversity. The last level in this new system could incorporate a boss fight to offer players

a new objective and prevent boredom from solely chasing high scores. Lastly, I think exploring accessibility

options such as a colorblindmode or difficulty settings would be important in creating a smoother player

experience.

Final Reflection
In aspiring to become a game designer, this project emphasized the importance of all aspects of game

development.While brainstorming ideas, I faced limitations in art skills and time constraints for coding,

highlighting the necessity of considering the contributions of artists, programmers, and other team

members. My goal with this gamewas to test and improvemy skills in design, programming, and art, while

creating a small, finished game. Despite recognizing areas where improvements could bemade, such as

better assets or longer gameplay, I am pleasedwith what I achieved as a solo developer within a short time

period. This experience deepenedmy understanding of the challenges involved in game creation and fueled

my eagerness to explore collaborative approaches.


